
CSCI 1430 Final Project Report:
HUSTL (Hyper-Ultra-Super-Time-Lapse)

Team HUSTL: Jiaju Ma, Michael Yicong Mao, James Li.
Brown University

9th May 2019

Abstract

We present a three-stage software pipeline that makes it
easier for people to create quality hyperlapse videos. Our
algorithm takes in either a series of photos shot individually
or a video input. If the input is a video, our pipeline will
extract optimal frames from the video through reducing a
cost matrix (first stage). On the second stage, input images
will be color corrected based strongest SIFT features of
all inputs. This ensures that all images have a cohesive
color (white balance and tone) and exposure. Finally, the
pipeline takes in the processed images and conducts camera
path stabilization on them. Our approach can assist users to
produce hyperlapse videos of good quality (consistent color
and stabilized shot) with minimal effort.

1. Introduction

Hyperlapse is a delicate art. Making professional hyper-
lapse videos requires precise and consistent step distance
between each photo and skilled camera alignment with
DSLRs on tripods. It is usually very cumbersome and time-
consuming. A 20 second hyperlapse may take a photographer
more than 2 hours to shoot.

Aside from effort and skills in shooting the photos, there
are many technical challenges in post production. One such
challenge is the compensation of insufficient or excessive
exposure when moving between environments with differ-
ent lighting conditions. Another obvious challenge is the
compensation for unwanted camera movement. To deal with
theses challenges, photographers often need to made the ad-
justment and compensation on a frame by frame basis which
could become a disaster if there are more than hundreds of
frames to edit.

To ease the process of hyperlapse creation, we propose
and implement a software pipeline composed of three stages
that use computer vision algorithms. The pipeline takes in
either images or videos as input, and outputs a hyperlapse
video of acceptable quality. If the input is a video clip, we

would run frame selection on the video and send the selected
frame to the next stage. If the input is images, the images are
sent directly to the second stage. The second stage takes in a
sequence of images and matches the color tone, white bal-
ance, and exposure of all inputs. The results are fed into the
final stage, where the image sequence is stabilized through
perspective warping and eventually recreated as a hyperlapse
video.

2. Related Work
In our search for research on hyperlapse videos, we did

not find many paper that directly matches our problem state-
ment. In the end, we combined ideas from multiple related
papers to form our unique pipeline.

Optimal Frames Selection

Frame selection is at the heart of of making hyperlapse
video. Many popular video editing tools, such as Adobe
Premiere, use a naive approach that selects frames uniformly
at random. There are also hardware-based approach that
relies on shutter and gyroscope information to select and
warp frames that yields the best stabilization results [1].
However, in the space of software-based approach, there
isn’t much research into frame selection aside from the paper
by Microsoft Research [6].

Color Consistency Across Frames

To ensure the coherence of the hyperlapse videos, we
need to adjust the images so that they share a common color
tone and similar white balance and exposure level (gamma
value). HaCohen et al. [4] proposed an Non-Rigid Dense
Correspondence (NRDC)-based method that optimizes color
consistency in a collection of photos. However, their method
is too computationally intensive and needs a large amount
of data to train. Park et al. [5] proposed a more efficient
method based on SIFT feature matching and observation
matrix construction, which requires no training at all and is
computationally much cheaper. We adapted Park et al. [5]
for our purposes.

1

Video Stabilization

There is no paper that specifically refers to stabilization
of hyperlapse created with individual photos. In a paper by
Joshi et al. [6], they used normal video stabilization for their
hyperlapse video generated from video. In their generated
video, the stabilization result seems good enough, so we
decided to use stabilization algorithms for normal video.

We found a 2013 paper by Liu et al. [7] that proposes a
novel way to smooth camera motion and reduce distortion
introduced by warping. A simplified version of this method
was also used by the paper by Joshi et al. [6]. This led us to
believe that such a method would be sufficient for hyperlapse
video smoothing.

3. Method
Software Used

We used the following languages and libraries: Python,
NumPy, Sci-Kit Image, Sci-Kit Video, OpenCV, Cyvlfeat,
(Python wrapper of MATLAB’s VLFeat library), MATLAB,
Computer Vision Toolbox. In addition, MACE (MAximal
Clique Enumerator) [9], a C program that finds the maxi-
mal clique within a graph, is used as part of the process to
implement the method proposed by Park et al. [5]

Optimal Frames Selection

This stage aims at selecting the optimal frame path that
renders the smoothest camera movement and the most con-
sistent frame rate in the output video. The implementation is
adapted from [6] and consists of three steps–frame matching,
cost building, and frame selection.

In frame matching, we first extract SIFT features from
each frame. Then, we find matching feature pairs between
frames and calculate the homography matrix H between
each frame in a given window size.

In cost building, we compute the alignment cost 1 and the
overlap cost 2 between each frame. Together, they make up
the motion cost 3 that measures the image similarity between
each frame.

Cr(i, j) =
1

n

n∑
p=1

||(xp, yp)Ti −H(i, j)(xp, yp)Tj ||2 (1)

Co(i, j) = ||(xc, yc)T −H(i, j)(xc, yc)
T ||2 (2)

Cm(i, j) =

{
Co(i, j) Cr(i, j) < τc

γ Cr(i, j) ≥ τc
(3)

On top of motion cost , we also take the speed in which the
optimal path travels into account. The speed cost is made
up of velocity cost 4 and acceleration cost 5. By penalizing
sudden jumps and incoherent frame rate, we yield a more
consistent and smoother frame sequence.

Cv(i, j, υ) = min(||(j − i)− υ||22, τv (4)

Ca(i, j, α) = min(||(j − i)− (i− α)||22, τa (5)

Cs(i, j, υ, α) = Cv(i, j, υ) + Ca(i, j, α) (6)

Finally, we employ a dynamic programming algorithm to
find an optimal path that minimizes the transition cost 7 from
frame to frame.

C(i, j, υ, α) = Cm(i, j) + Cs(i, j, υ, α) (7)

Color Consistency Across Frames

This stage of the pipeline takes in a series of images,
which can be photos taken with a camera, or frames ex-
tracted from a video by the first stage of the pipeline (optimal
frames selection). Color adjustments (white balance, color
tone, and gamma) are applied to all images through a global
color correction model. The method we used in this stage
is adapted from [5], based on their MATLAB implementa-
tion [8]. Python and Cyvfleat are used so that SIFT feature
extractor is available to us (it is not available in OpenCV 3).

In our implementation, we firstly extract SIFT features
from each input image. We randomly sample a certain
amount of features (1000-2000) from all extracted to reduce
computational cost. A bi-directional matching of feature
points is performed for each input image pairs. The matches
are then post-processed by removing non-unique pairs. An
undirected match graph G = (V,E), where each vertices in
V is a SIFT feature and each edge inE represents a match, is
constructed. We then use MACE [8] to find maximal cliques
of size 2 and above.

Then, color patches are extracted from images based on
SIFT features that are part of the correspondences found
in the maximal cliques. These patches are put together to
construct an observation matrix I such that

I = C +A+ E (8)
where C is the color coefficient matrix, A is the albedo
matrix, and E is the residual matrix. To further process the
observation matrix before applying the color adjustments
to images, we used a technique called Factorization-Based
Low-Rank Matrix Completion proposed by Cabral et al. [2]

Finally, we apply the post-process matrix I to all input
images to achieve coherent color consistency.

Video Stabilization

We adapted the stabilization algorithm from this paper by
Liu et al. [7]. The paper proposed a method of splitting the
image into sub-sections and smooth the camera path of each
sub-section. Then they used quadratic functions to calculate
a smooth path for the stabilized footage. The images then
goes through As-Similar-As-Possible warping [3] with shape
preservation. This creates new frames that matches previous
frames.

The camera path is estimated by the product homography
between corresponding sub-sections in adjacent frames. This

provides a quick way to calculate path without calculating
the fundamental matrix and the relative camera positions.

In our implementation, we used Python MATLAB engine
provided by MATLAB, opencv, scipy, numpy and scikit-
image. Due to the paper using As-Similar-As-Possible warp-
ing, which by itself is very difficult to re-implement, we
decided to use part of the MATLAB code written by SuTan-
Tank on GitHub.

The algorithm would split the image in to a grid mesh of
i cells. For each cell, every point is represented as a bilinear
interpolation of the edges of the cell. Then, the same cell is
matched on the next image, and a homography matrix Hi(t)
is calculated for cell i at time step t. Then, the path of each
cell over time is calculated as

Pi(t) =

t∏
m=0

Hi(m) (9)

H
(0)
i is the original camera pose, which would be interpreted

as a matrix of 1s.
This path is smoothed over by optimizing the following

term

O({P (t)}) =∑
t

(||P (t)−C(t)||2+λt
∑
r∈Ωt

wt,r(C)·||P (t)−P (r)||2)

(10)
Ωt is the neighborhood of t, andwt,r is the weight to preserve
weight discontinuities in panning and transitions.

Then, using the smoothed path, we get optimized homo-
graphies {Ĥi(t)} that we can use to perform As Similar As
Possible warping [3] with paddings on the outside. Then, the
padded image is cropped to get stable footage.

In our implementation, we used SURF as features, rather
than minimum eigenvalue corner points as in the MATLAB
code. We extensively experimented on the hyper-parameters
and found a generally well-behaved set of hyper-parameters
on multiple sets of our data.

4. Results
Result Videos

1. Main Green Video

• Baseline video

• Result video

• Video showing Warping

2. Arch Video

• Baseline video

• Result video

• Video showing Warping

Figure 1. Image Difference

Optimal Frames Selection

To assess our results, we also output a sequence of frame
images selected uniformly at random as the benchmark. Then
we compare the frame sequence from naive approach and op-
timal approach to adjust our hyperparameters for the best per-
formance. Then, we measure the image difference 2 between
consecutive frames in both naive and optimal approach. As
illustrated in figure 1, the optimal path yields higher overlaps
between consecutive frames than the naive path for most
of the times with some outliers here and there. We believe
these outliers are contributed by moving objects in the input
video, such as walking pedestrians in front of the camera,
that results in necessary image difference and cannot be
avoided. Overall, the selection process is able to identify the
most cost-effective frame sequence that is consistent with
the target frame rate for the final output.

Color Consistency Across Frames

We fed two datasets into this stage of the pipeline - a
series of photos depicting a movement from the interior
of Brown’s Salomon Hall to the Main Green and frames
extracted from a video taken by a camera travelling through
the Main Green.

The photo series has a sudden change in exposure (indoor-
to-outdoor transition) and color tone. Our method in this
stage is able to both brighten the underexposed images and
keep a cohesive color tone across images. Selected input
images from this photo series and corresponding results are
shown in Figure 2

The extracted Main Green frames have a consistent color
tone and exposure level, except for those taken under the
Faunce Arch, where low light caused the images to appear
darker than rest of the frames. Our implementation is able to
significantly brighten the underexposed images to the same
level as rest of the extracted frames (Figure 3).

https://github.com/SuTanTank/BundledCameraPathVideoStabilization
https://vimeo.com/335471326
https://vimeo.com/335471168
https://vimeo.com/335471485
https://vimeo.com/335471673
https://vimeo.com/335471545
https://vimeo.com/335471773

Video Stabilization

We tested the pipeline on a series of images of walking
towards the engineering building, a series of images walking
towards the arch between Metcalf and Caswell, and a se-
ries of images extracted from a video walking through main
green. Some of the other data that contains panning was not
usable to test the algorithm due to the panning only contain-
ing less than 10 frames and would be less than half a second
in actual video speed. This resulted in the feature points
moving out of the mesh cell so the RANSAC algorithm used
to fit homography is encountering issues.

On our series of images of the engineering building, the
original series of photos are relatively stable, and there are
only a few people people passing by. This is a fairly easy
test and our method is successfully able to separate the back-
ground from people walking by and create a stable back-
ground. See Figure 4.

In our test of walking towards the arch between Caswell
and Metcalf, there is a slight horizontal shift of the camera.
Our method successfully identified that and warped the im-
age so that it looks as if no shift has occurred. See Figure
5.

In our test of walking towards Faunce Arch on the Main
Green, there are people walking towards and past the camera,
which makes tracking more difficult than previous test data.
After increasing number of iterations optimizing the camera
path, the results become fairly acceptable in the first half
of the series, but the second half remain sub-optimal. We
suspect this is caused by the extreme shift of tracked points
as the camera approaches and enters the arch, which messes
with the tracking algorithm. See Figure 6.

4.1. Discussion

In the first stage Optimal Frame Selection, we are able
to remove most of the camera jiggling from human move-
ment. However, since the camera is handheld and we were
moving on foot when the video was taken, the camera jig-
gling was quite consistent in a left-right-left-right movement.
Thus, the uniform random sampling from the naive approach
functions as a frequency pass that was also able to filter out
more than half of the jiggling due to foot steps. We believe
that a more diverse database that includes more inconsistent
camera jiggling, i.e. videos taken on bikes or in cars could
show a more dramatic contrast between the naive and the
optimal approach.

For the second stage Color Consistency Across Frames
of our pipeline, we are able to achieve what we have planned
to do. Given a series of images or extracted frames as input,
we are able to efficiently compute a color correction matrix
(I) that ensures all inputs have similar values of color tone,
gamma, and white balance. However, we rely on an external
C program (MACE [9]) compiled in Windows 10 environ-
ment, which can be burdensome if we want our pipeline

to run in other OS. Moreover, our method is not ”smart”
enough to determine which color standard we want all the
input images to adhere to. For example, if the majority of
the input images are underexposed, then the program will
try to brighten all the images, causing the normally-exposed
images to appear overexposed. This can be alleviated by
increasing the number of SIFT features kept, but doing so
would also drastically increase the computational cost of the
algorithm.

In the third stage Video Stabilization of our pipeline, we
are mostly able to get good result on forgiving footages. We
discovered that if the sequence of images contain fast side-to-
side motion or when a new scene is entered, the stabilization
algorithm doesn’t perform as well, or even refuses to work
properly (RANSAC not having enough matches). We sus-
pect that this is caused by the tracking algorithm having a
tendency to refuse tracking fast-moving feature points. This
caused it to lose track of many features when dealing with
fast-moving sequences of images, or when approaching and
entering narrow passageways.

Another issue is distortion. It is still difficult to control
distortion in our result, even though the original paper [7]
claims better distortion control than other methods, we find
that even with extensive hyper-parameter tweaking, distor-
tion is still visible. To achieve lesser distortion, we may use
perspective warping that causes less distortion. We are so far
unable to find one such algorithm.

A solution to achieve better results may be to utilize the
camera lens information to construct a 3d representation of
the camera path and orientation, and smooth the camera path
according to that. This may achieve better results, but would
incur a lot more calculation.

5. Conclusion
As shown in Results section, our three-stage pipeline is

able to greatly improve the quality of the hyperlapse video
in terms of frame selection, color consistency, and video
stabilization. The input was shot handheld. We did not use
any physical stabilization method or carefully align photos.
Our results show that our implementations allow people to
transform amateur video footage or image sequence into
quality hyperlapse videos without the need of expensive
equipment or softwares like Adobe Premiere Pro. This would
make hyperlapse video creation easier and more feasible for
more people, allowing it to thrive as an photography tool and
an art form. Content creators, film makers, or just people
interested in making travel vlogs now have a more accessible
option to create hyperlapse videos.

References
[1] J. B. M. L. Alexandre Karpenko, David Jacobs. Digital video

stabilization and rolling shutter correction using gyroscopes.
2013. 1

[2] R. Cabral, F. D. L. Torre, J. P. Costeira, and A. Bernardino.
Unifying nuclear norm and bilinear factorization approaches
for low-rank matrix decomposition. In 2013 IEEE Interna-
tional Conference on Computer Vision, pages 2488–2495, Dec
2013. 2

[3] R. Chen and C. Gotsman. Generalized As-Similar-As-Possible
Warping with Applications in Digital Photography. Computer
Graphics Forum, 35(2):081–092, 2016. 2, 3

[4] Y. HaCohen, E. Shechtman, D. B. Goldman, and D. Lischinski.
Optimizing color consistency in photo collections. ACM Trans.
Graph., 32(4):38:1–38:10, July 2013. 1

[5] S. N. S. Jaesik Park, Yu-Wing Tai and I. S. Kweon. Efficient
and robust color consistency for community photo collections.
In IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR), 2016. 1, 2, 5

[6] N. Joshi, W. Kienzle, M. Toelle, M. Uyttendaele, and M. F. Co-
hen. Real-time hyperlapse creation via optimal frame selection.
ACM Trans. Graph., 34:63:1–63:9, 2015. 1, 2, 5

[7] S. Liu, L. Yuan, P. Tan, and J. Sun. Bundled camera paths for
video stabilization. ACM Trans. Graph., 32:78:1–78:10, 2013.
2, 4, 5

[8] J. Park. Color consistency for community photo col-
lections. https://github.com/syncle/photo_
consistency, 2018. 2

[9] T. Uno. Mace: Maximal clique enumerator. 2, 4

Appendix
Team contributions

Please describe in one paragraph per team member what
each of you contributed to the project.

Jiaju Ma Researched and implemented second stage of the
pipeline (Color Consistency Across Frames) based
on the method proposed in [5]. Contributed to our own
database used to create hyperlapse videos. Worked on
the final presentation slides and the final report.

Michael Mao Researched and implemented first stage of
the pipeline(Video Stabilization) based on the method
proposed in [7]. Managed project environment and
maintained automatic docs generation for the project.
Contributed to our database and worked on the final
presentation slides and the final report.

James Li Researched and implemented first stage of the
pipeline(Optimal Frame Selection) based on method
proposed in [6]. Contributed to our database and worked
on the final presentation slides and the final report.

https://github.com/syncle/photo_consistency
https://github.com/syncle/photo_consistency

Figures

Figure 2. Salomon-Main Green Photo Series Upper: Selected Input Images. Lower: Corresponding Outputs After Color Adjustments.

Figure 3. Extracted Frames from the Main Green Video. Upper: Selected Input Images. Lower: Corresponding Outputs After Color
Adjustments.

Figure 4. Selected frames from the Engineering Building photo series. Upper: Input Images (Camera JPEG). Middle: Corresponding Outputs
After Path Smoothed Warping. Lower: Corresponding Outputs After Cropping.

Figure 5. Selected frames from the Metcalf-Caswell Arch photo series. Upper: Input Images (Camera JPEG). Middle: Corresponding
Outputs After Path Smoothed Warping. Lower: Corresponding Outputs After Cropping.

Figure 6. Extracted frames from the Main Green photo video. Upper: Extracted Images (After Color Correction). Middle: Corresponding
Outputs After Path Smoothed Warping. Lower: Corresponding Outputs After Cropping.

